
Generalizations of the Dirac equation in covariant and Hamiltonian form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 2031

(http://iopscience.iop.org/0305-4470/34/10/307)

Download details:

IP Address: 171.66.16.124

The article was downloaded on 02/06/2010 at 08:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 2031–2039 www.iop.org/Journals/ja PII: S0305-4470(01)16867-8

Generalizations of the Dirac equation in covariant and
Hamiltonian form

R-K Loide1, I Ots2 and R Saar3

1 Tallinn Technical University, Ehitajate tee 5, 19086 Tallinn, Estonia
2 Institute of Physics, Riia 142, 51014 Tartu, Estonia
3 Institute of Theoretical Physics, Tartu University, Tähe 4, 51010 Tartu, Estonia
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Abstract
The Dirac wave equation can be treated equally in covariant and Hamiltonian
forms. Recently the equations in Hamiltonian form which are in some sense
the generalizations of the Dirac Hamiltonian form to the arbitrary spin case
have become popular. Here we give similar generalization in the covariant
form for the field with n bispinor indices and investigate the physics behind
these two generalizations. We show that both generalizations are related to
the representations of the de Sitter group and give the multiplets with certain
mass and spin. It appears that covariant and Hamiltonian forms are not
physically equivalent, the latter one offers nonphysical solutions which should
be eliminated using some sort of additional conditions.

PACS numbers: 0365P, 1130C

1. Introduction

The problem of the relativistic particle with arbitrary spin has had a long history, but in spite of
the enormous amount of related papers there are still a lot of open questions. Due to the known
difficulties with higher-spin interactions (Velo and Zwanziger 1969a, b) different single- and
multi-spin theories have been proposed. In multi-spin case the acausality difficulties may be
avoided, but there appear other problems, such as the indefiniteness of energy and charge, and
the presence of unphysical states.

The most important wave equation in modern field theory is the Dirac spin-1/2 equation
(Dirac 1928a, b). For that reason its various generalizations to the higher-spin case are also
of great interest. There are two main ways to generalize. The first one starts from the Dirac
equation in its covariant form and leads to set of relativistic wave equations related with the
de Sitter group SO(1, 4). The general case of Bhabha equations (Bhabha 1945, Lubansky
1942a, b) related to the representations of the de Sitter group was recently treated in Loide
et al (1997a, b), here we obtain a special case. As we shall demonstrate later, the Bargmann–
Wigner equations (Bargmann and Wigner 1948) have similar de Sitter structure. The second
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one starts from the Dirac theory in its Hamiltonian form. In that case we obtain another
interesting set of equations, recently proposed and investigated in the work of Moshinsky and
del Sol Mesa (1996) and Moshinsky and Smirnov (1996). In this paper we will investigate and
compare these two main sets of equations and we will demonstrate that they are not physically
equivalent. The covariant form gives a set of Poincaré states with certain mass and spin, but
the corresponding Hamiltonian form leads in general to different mass and spin content, and
in the integer-spin case it has also nonphysical solutions having vanishing energy.

2. The Dirac equation and its generalization

Massive spin-1/2 is described with the help of the Dirac equation

(pµγ
µ −m)ψ = 0 (2.1)

where γ µ are the usual Dirac matrices, ψ is a four-component bispinor and m is a mass of a
given particle.

The most natural generalization of equation (2.1) is obtained by introducing the field with
n bispinor indices

ψα1,α2...αn (2.2)

which is a solution of the equation

(pµβ
µ −m)ψ = 0 (2.3)

where the β-matrices are

βµ = 1

n

n∑
i=1

γ
µ

i (2.4)

and γ µi is a direct product:

γ
µ

i = I ⊗ I ⊗ · · · ⊗ γ µ ⊗ · · · ⊗ I (2.5)

with Dirac matrices in the ith place.
In order to give a more thorough analysis of equation (2.3) we first note that equation (2.3)

and also the Dirac equation we started with, are Bhabha equations connected with the de Sitter
group SO(1, 4). If we define operators

Sµ5 = n

2
βµ (2.6)

we get the de Sitter algebra SO(1, 4), where the Lorentz generators Sµν are generated in the
following way:

Sµν = n2

4
[βµ, βν] ≡ [Sµ5Sν5]. (2.7)

Equation (2.3) is therefore written as a Bhabha equation(
pµS

µ5 − nm

2

)
ψ = 0. (2.8)

The most general form of Bhabha equation (2.8), corresponding to the arbitrary irreducible
representations (n1, n2) of the de Sitter group SO(1, 5)was previously treated in Loide (1975),
Loide et al (1997a, b). Equation (2.8) with a specific choice of matrices (2.4) and (2.6) is a
special Bhabha equation, corresponding to a fixed set of representations (Loide et al 1997a, b).
It gives a certain multiplet of states up to spin s = n/2.

In the Dirac case (n = 1) we have

Sµ5 = 1
2γ

µ (2.9)
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which corresponds to a four-component representation (1/2, 1/2) of SO(1, 4). The general
case, of course, leads to the direct product of representations

(1/2, 1/2)⊗ (1/2, 1/2)⊗ · · · ⊗ (1/2, 1/2) (2.10)

which reduces to the direct sum of irreducible representations

(n/2, n/2), (n/2, n/2 − 1), . . . , (n/2 − 1, n/2 − 1), . . . , (1/2, 1/2) (or (0, 0)) (2.11)

with different multiplicity (Kõiv et al 1970).
Next we treat the lowest cases n = 2 and 3 more thoroughly.
In the n = 2 case the de Sitter generators Sµ5 are

Sµ5 ≡ βµ = 1
2 (γ

µ ⊗ I + I ⊗ γ µ). (2.12)

The 16-component field ψαβ corresponds to the representation

(1/2, 1/2)⊗ (1/2, 1/2) = (1, 1)⊕ (1, 0)⊕ (0, 0) (2.13)

which is a direct sum of ten-, five- and one-component irreducible representations of SO(1, 4).
Obtaining a separate equation for each irreducible representation gives us the possibility

to analyse them separately. In the ten-component case (1, 1) we get the well known Kemmer–
Duffin spin-1 equation (Duffin 1938, Kemmer 1939) corresponding to the symmetrical field
ψαβ = ψβα . The antisymmetrical field ψαβ = −ψβα reduces to a five-component irreducible
representation (1, 0) and one-component scalar representation (0, 0). Equation (2.6)
corresponding to the irreducible representation (1, 0) is a Kemmer–Duffin spin-0 equation.
The scalar field gives due to the vanishing Sµ5 matrices no physical states.

In the n = 3 case the de Sitter generators Sµ5 are

Sµ5 ≡ 3
2β

µ = 1
2 (γ

µ ⊗ I ⊗ I + I ⊗ γ µ ⊗ I + I ⊗ I ⊗ γ µ). (2.14)

The 64-component field ψαβγ corresponds to the following SO(1, 4) representation:

(1/2, 1/2)⊗ (1/2, 1/2)⊗ (1/2, 1/2) = (3/2, 3/2)⊕ 2(3/2, 1/2)⊕ 3(1/2, 1/2) (2.15)

which is therefore the direct sum of 20-, 16- and four-component irreducible representations
with various multiplicities.

The mass and spin content of corresponding equations will be given later, here we only
mention that the equation describes four spin-3/2 and eight spin-1/2 states in total.

3. Bargmann–Wigner equations

Bargmann and Wigner (1948) proposed an interesting single-spin theory, which is also a
generalization of the Dirac spin-1/2 theory. Bargmann and Wigner considered the symmetrical
field ψα1α2...αn demanding Dirac equation for each component αi . Therefore, the Bargmann–
Wigner s = n/2 equation for a given n is a set of Dirac equations

(pµγ
µ

i −m)ψ = 0 i = 1, 2, . . . , n. (3.1)

As we have already demonstrated in Loide et al (1997a) the given set of equations is closely
related to the Bhabha equations. Adding and subtracting equations it is easy to rewrite
equation (3.1) as an equation(

pµ

(
1

n

n∑
i=1

γ
µ

i

)
−m

)
ψ = 0 (3.2)

and n− 1 subsidiary conditions

pµ(γ
µ

i − γ
µ

i+1)ψ = 0 i = 1, . . . , n− 1. (3.3)
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By comparing equation (3.2) with equations (2.3) and (2.4) one can see that (3.2) is a
Bhabha equation treated above. The symmetrical field ψα1α2...αn corresponds to the SO(1, 4)
representation (n/2, n/2). In general it contains n + 1 spin-n/2 states and also lower spin
states, but the subsidiary conditions (3.3) leave only one spin-n/2 state with mass m.

In the n = 2 case equation (3.2) is the well known Kemmer–Duffin spin-1 equation. In
that case the conditions (3.3) are automatically satisfied.

4. Physical states

Physical states with a given mass and spin are unitary irreducible representations (m, s) of
the Poincaré group. As it was demonstrated in Loide et al (1993) the role of relativistic wave
equations is to define a proper Poincaré basis of physical states.

Next we briefly recall the role of wave equations and give the basis for analysis of mass
and spin spectrum of equations (2.3). Without the loss of generality we may use the rest system
�p = 0. In the rest system equation (2.3) reduces to

(p̂0β
0 −m)ψ = 0. (4.1)

The latter is an eigenvalue problem of the β0-matrix

β0ψ = hψ ≡ m

p̂0
ψ. (4.2)

From (4.2) it is obvious that to each real pair of nonzero eigenvalues ±h we get

p̂0 = ± m

|h| ≡ ±mh (4.3)

i.e. physical states with mass mh.
The possible eigenvalue h = 0 is due to m �= 0 eliminated and gives no physical states.
As we see, the primary role of relativistic wave equation (2.3) is to determine the masses

of physical states. Since β0 commutes with the generators Skl of space rotations, in addition
to (4.2) we may demand that ψ is at the same time the eigenstate with a given spin and spin
projection

�S2ψ = s(s + 1)ψ S3ψ = σψ (4.4)

where S3 = iS12 and �S2 = −(S23)2−(S31)2−(S12)2. The solution of equations (4.2) and (4.4)
is a physical state

ψmhsσ (4.5)

with a given mass, spin and spin projection.
The above given procedure defines a proper Poincaré basis with correct transformation

properties (Loide et al 1993).
In the case of our generalized Dirac equations the analysis is performed similarly. If we

present equation (2.3) in the SO(1, 4)-form (2.8), instead of (4.2) we have the eigenvalue
problem of S05 matrix

S05ψ = hψ (4.6)

which in our particular case gives masses

mh = nm

2|h| . (4.7)

Since the analysis of general Bhabha equations, there corresponding to the irreducible
representation (n1, n2) is given elsewhere (Loide et al 1997a), here we shall treat only two
special cases, n = 2 and 3, which demonstrate the main structure of equations (2.3).
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n = 2. Representation (1, 1). Eigenvalues of S05 are

h = 0,±1. (4.8)

We have a single spin-1 state with massm1 = m. It is interesting to note, that to h = 0, which
is not a solution of equation (2.3), there correspond two spins: s = 1 and 0.

n = 2. Representation (1, 0). Eigenvalues of S05 are the same as in the previous case,
but they correspond to different spins. Now the solution with mass m corresponds to spin 0,
eigenvalue h = 0 to spin 1.

n = 3. Representation (3/2, 3/2). Eigenvalues of S05 are

h = ±3/2,±1/2. (4.9)

From (4.7) it follows that we have two mass states m and 3m. Since h = ±3/2 correspond to
spin 3/2 and h = ±1/2 to spins 3/2 and 1/2, equation (2.6) has the following mass and spin
content:

m3/2 = m s = 3/2 m1/2 = 3m s = 3/2, 1/2. (4.10)

n = 3. Representation (3/2, 1/2). Eigenvalues of S05 are the same as in the previous case,
but the general spin content is different. Now h = ±3/2 correspond to spin 1/2 and h = ±1/2
to spins 3/2 and 1/2, equation (2.6) has the following mass and spin content:

m3/2 = m s = 1/2 m1/2 = 3m s = 3/2, 1/2. (4.11)

n = 3. Representation (1/2, 1/2). Eigenvalues of S05 are h = ±1/2 and we have

m3/2 = 3m s = 1/2. (4.12)

As we have mentioned above, the n = 3 case gives, in general, four spins 3/2 with
masses m or 3m and eight spins 1/2 with masses m or 3m. Since S05 may be decomposed
into irreducible representations of SO(1, 4), we get separate equations for each irreducible
representation for which the mass and spin content is given by (4.10), (4.11) or (4.12).

5. Hamiltonian wave equations

The Dirac equation offers one more interesting generalization recently proposed in the works
of Moshinsky and del Sol Mesa (1996) and Moshinsky and Smirnov (1996). These equations
are in Hamiltonian form and therefore allow, as in ordinary quantum mechanics, the treatment
of different potentials and therefore extend the results obtained for spin 1/2 to an arbitrary spin
case.

Dirac equation (2.1), if multiplied to γ 0 ≡ β, may be presented in the Hamiltonian form

p0ψ = ( �p · �α +mβ)ψ (5.1)

where �α = γ 0 �γ . Here

H = �p · �α +mβ (5.2)

is a Dirac Hamiltonian and allows the addition of some potential energy when treating different
physical problems, such as the relativistic Coulomb problem, the Dirac oscillator and others.
Equation (5.1) is, of course, a well known energy eigenvalue problem;

Hψ = Eψ. (5.3)
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In a similar way to section 2, we give the generalization of (5.1) to the arbitrary field
ψα1α2...αn case

p0ψ = ( �p · �A +mB)ψ (5.4)

where

�A = 1

n

n∑
i=1

γ 0
i �γi B = 1

n

n∑
i=1

γ 0
i . (5.5)

So we have reached the arbitrary-spin Hamiltonian equations, proposed by Moshinsky and del
Sol Mesa (1996) and Moshinsky and Smirnov (1996) using a different approach.

Next we shall give a thorough analysis of equation (5.4) in the free-field case and discuss
the equivalency with the covariant case discussed above. As we shall see, these equations are
generally not equivalent.

In a similar way to as in the covariant case, we exploit the generators of the de Sitter group
SO(1, 4). It is easy to verify that the Hamiltonian of equation (5.4) may be rewritten as

H = 2

n
(pkS

0k +mS05) (5.6)

where S0k are the generators of Lorentz boosts.
Exploiting the knowledge of SO(1, 4) representations it is possible to study the physics

behind the equations written in the Hamiltonian form and to compare with the results obtained
for the similar covariant case.

It should be noted that the Hamiltonian (5.6) was already given in connection with the
generalized Foldy–Wouthuysen transformation in our earlier papers (Loide 1975, Loide et al
1997b), but the physics behind it was not analysed.

Without the loss of generality we also treat only the rest case �p = 0. Equation (5.4),
using (5.6), gives

2m

n
S05ψ = p̂0ψ (5.7)

which is also the eigenvalue problem of S05

S05ψ = hψ ≡ np̂0

2m
ψ. (5.8)

The results, compared with the covariant case ((4.6) and (4.7)), are in general different.
From (5.8) it follows that the rest-system energy, i.e. the masses of the physical states are

p̂0 ≡ ±mh = ±2m|h|
n

. (5.9)

As compared with the covariant case the most important difference here is that in the integer-
spin case the eigenvalue h = 0 is not excluded and leads to unphysical solutions having
zero mass and energy. In Moshinky and del Sol Mesa (1994) these solutions are called a
cockroach nest. Independently of what we call them, the presence of unphysical solutions is
not a positive point of a given theory and one must find some procedure (additional conditions)
to exclude them. The presence of such solutions may lead to nonzero energies, if interactions
are considered, and therefore to the generation of some ghost states.

Next we shall see that the mass content is also different. Only for the maximum possible
eigenvalue h = n/2 do we get the same mass m. Unfortunately the masses of other states are
different. If, for example, we take the eigenvalue h = n/2 − 1 which is next to the maximal
one, from (5.9) we get

mh = (n− 2)m

n
(5.10)
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then the corresponding covariant state has mass

mh = nm

(n− 2)
. (5.11)

Let us take some specific examples.

n = 2. Representation (1, 1). For h = ±1 we get mass m and spin 1 as in the Kemmer–
Duffin case. The eigenvalue h = 0, which is connected with spins 1 and 0, gives solutions with
vanishing energy. As we have already mentioned above, these unphysical solutions are absent
in the Kemmer–Duffin theory. Representation (1, 0) gives similar results. Now h = ±1 gives
massm and spin 0 as in the Kemmer–Duffin spin-0 case: h = 0 which is connected with spin 1
leads to unphysical solutions.

n = 3. Independently on irreducible representations (3/2, 3/2), (3/2, 1/2) or (1/2, 1/2)
we have masses m and m/3, the latter corresponds to h = ±1/2. In the covariant case the
representation (3/2, 3/2) describes spin 3/2 with mass m and spins 3/2 and 1/2 with mass
3m. In the Hamiltonian case the latter solutions have mass m/3.

Of course, one is ready to ask if the two generalizations, treated above, are both physically
important? As we have seen there are similar states in both realizations, but also states which
are not physically equivalent. As we have stated in section 4, the solutions of the covariant
realization have direct physical meaning and transform as unitary irreducible representations
of the Poincaré group (Loide et al 1993). Similarly it is possible to built the Poincaré basis for
the Hamiltonian equations finding the corresponding covariant form. Of course, the covariant
equation corresponding to the Hamiltonian equation is of higher order. Therefore, treating
the covariant and Hamiltonian forms one must use different Poincaré bases. The main reason
why the covariant and Hamiltonian forms are different, is that in the n �= 1 case (β0)2 �= I ,
and consequently, equation (5.4) does not follow from equation (2.3). As we have already
mentioned the drawback of Hamiltonian realization is the presence of unphysical solutions in
the integer spin case, which should be eliminated using some sort of additional conditions.

The Hamiltonian form (5.4) is useful when treating various interactions, since one may
exploit potentials known from quantum mechanics and solve the corresponding eigenvalue
problems to see the physics behind the spin-1/2 case. However, the analysis given above
demonstrates that dealing with the results obtained for the higher-spin case one must be very
careful to separate the results which correspond to the true physical states from the false,
nonphysical solutions.

To clarify the point we exploit the results for a free particle with arbitrary spin in a magnetic
field given in Moshinsky and Smirnov (1996). The potential used is as follows:

V (B) = e

2
�r × �B (5.12)

where �B is some external magnetic field.
In the spin-1 case, which corresponds to the SO(1, 4) representation (1, 1), the following

equations for energies were given by Moshinsky and Smirnov (1996):

E2(E2 − 1 − 2ω2(2µ + 1)) = 0 (5.13)

E6 − 2E4[1 + 2ω2(2µ + 1)] + E2[1 + 2ω2(2µ + 1)2] − 4ω2 = 0 (5.14)

where µ is a projection of total momentum and ω = (eB/2)1/2. In addition, m is chosen to
be 1. Similarly, as in ordinary quantum mechanics, the solutions with different spin projection
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σ separate. Solutions (5.13) correspond to σ = 0 and (5.14) to σ = ±1. In the limit ω → 0
from (5.13) we get

E2 = 0 and E2 = 1 (5.15)

and from (5.14)

E2 = 0 and E2 = 1 E2 = 1. (5.16)

From (5.15) and (5.16) we see that we have normal solutions for spin 1, and four unphysical
solutions E = 0 for spin 1 and spin 0. However, in the general magnetic field case (5.14)
may lead to a situation where the solutions E = 0 may be lost and there may appear complex
energy values, since (5.14), as the cubic equation in E2 may have one to three real solutions
depending on the choice of ω and µ.

To conclude this section we give some remarks on the group structure of the equations
investigated above. We have stressed the connection with the de Sitter group, because the
Lorentz generators and matrices βµ form a closed algerba, which in our metric corresponds to
SO(1, 5). Therefore the covariant form, we analysed here, gives a specific set of well known
Bhabha equations. In addition, the Hamiltonian form was expressed and analysed with the
help of SO(1, 5) generators. In Moshinsky and del Sol Mesa (1996), Moshinsky and Smirnov
(1996) and Moshinsky et al (1998), equation (5.4) is treated from a viewpoint of the SU(4)
group, which is reduced to the direct product SU(2)⊗SU(2), associated with the ordinary and
so-called sign spin. The SU(4) structure is specific to the given realization of matrices (2.5)
or (5.5) and is useful when one treats the interactions which connect different irreducible
representations of the SO(1, 5) group. Interactions, treated so far do not interlock SO(1, 5)
representations and in that case it is simpler to treat them separately. Moreover, using the
SO(1, 5) structure, one may analyse the covariant and Hamiltonian equations corresponding
to the arbitrary representation of the de Sitter group and not limit oneself with the direct
products of Dirac bispinors. On the other hand, one may always use representations of larger
groups, if necessary. In our previous analysis the SO(1, 5) structure was more transparent.

6. Conclusions

In this paper we have examined the two possible generalizations of the well known Dirac
theory, the first one being the covariant generalization

(pµβ
µ −m)ψ = 0

where the β-matrices were the following:

βµ = 1

n

n∑
i=1

γ
µ

i .

The second one was the Hamiltonian generalization

p0ψ = ( �p × �A +mB)ψ

where

�A = 1

n

n∑
i=1

γ 0
i �γi B = 1

n

n∑
i=1

γ 0
i .

Matrices Sµ5 = n
2β

µ and Sµν from the closed Lie algebra of the de Sitter group SO(1, 5) and
the covariant and Hamiltonian equations may be rewritten as(

pµS
µ5 − nm

2

)
ψ = 0 and p0ψ = 2

n
(pkS

0k +mS05)ψ.
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Therefore both realizations are most naturally analysed from the viewpoint of irreducible
representations of SO(1, 4). Of course, the field ψ with n bispinor indices is specific and
one may similarly treat other fields corresponding to arbitrary representations of SO(1, 4).
As we have demonstrated above, the covariant and Hamiltonian realizations are different,
corresponding to different Poincaré bases and leading to different physics when interactions
are considered.

It should be mentioned that the de Sitter group must be considered as an important auxiliary
group which provides an unified approach to some classes of relativistic field equations. In
some sense the de Sitter group is the group most closely related with the Poincaré group. As
it was demonstrated by Inonü and Wigner (1953), the contraction of the de Sitter group is the
Poincaré group. In the theory of group deformations, on the other hand, it is demonstrated that
the deformation of the Poincaré group is the de Sitter group (Levy-Nahas 1967).

In the specific case treated here, the field withn bispinor indices is also the representation of
the larger group SU(4) and the problem of an arbitrary spin relativistic equation can be treated
through a subgroup of SU(4) which is the unitary symplectic group Sp(4) or, equivalently
O(5), as was performed by Moshinsky et al (1998).
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